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I. INTRODUCTION
| .Although the study of wave scattering by randomly rough surfaces started
several decades ago, it is still a challenging research topic today [1-11].
Basically, when the surface is slightly rough and its surface slope is generally
smaller than uaity, the perturbation technique can be used. When the radius of
curvature of the surface is much greater than the wavelength, the Kirchhoff
approximation can be applied [12]. In other words, for relatively long wavelength
waves, the perturbation technique is a good choice; for relative short wavelength
waves, the Kirchhoff approximation can be adopted. In any situation, second
moments of the scattered wave field can provide some useful information such as
average intensity. More fruitful information on scattering characteristics relies
upon the knowledge of fourth moments of the scattered wave field. However, more
difffculties will be encountered in deriving the fourth moments. Wave scattering
by randomly rough surfaces is not only an interesting topic for theoretical study
but also a practical problem in many applications ranging from microwave
scattering by ground surfaces in remote sensing, acoustic scattering by the ocean
surface and floor in underwater acoustics, to optical scattering by a rough metal,
dielectrics, or semiconductor surfaces in designing optics and electronics
devices.

In this paper, three types of fourth moments are evaluated for acoustic waves
forward gscattered by a rough ocean surface. The first one is the scintillation

index o defined by

(L)

o = [<|p|*>/<|p|®>? -1]Y/2
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Here p is the scattered acoustic wave field and < > stands for an ensemble
>average. The scintillation index describes the intensity fluctuation of the
scattered wave. The purpose of evaluating the other two fourth moments is to
extract some information on the phase fluctuation of the scattered wave. To see
this point, let us first consider the case of weak scattering in which the
fluctuations of the log-amplitude and phase of the scattered wave field are either

weak or jointly Gaussian distributed. Hence, by writing the scattered wave p as

. (2)
p =exp(y + 15)

in terms of the log-amplitude x and phase S, the two-position coherence function

<(pypz")®> is given by

<(pyp;)?> = exp [2<(x, + x) P> lexp [-2< (5, -5,) D] (3)

x exp [41<(x,+X;) (5,-5,)>]

where the subscripts 1 and 2 stand for the waves at positions 1 and 2,

respectively. Meanwhile, the two-position intensity correlation function <I; I,>

is given by

<I,I,> = <|p,|*lp,1%> “
= exp [2<(x, +X,;) 2>)
where the intensity I = |p|2. Therefore,
< >) 2>
PP 2| n -2 ¢(5,~5,)%] (5

I Ip»

which describes the fluctuation of the relative phase between the two observation

positions. When scattering becomes stronger, the simple result in Eq. (5) is not




4 - 9 August 1990
CCY:STM:1lzh

valid. However, the ratio |<(p,p;">|/<I;I;> or the difference between |<(p:p,")?|
‘and <I,I,> still carries information on the relative phase fluctuations. To
extract this information, the normalized two-position coherence function
<(pp2")?%/<I;><1,> and normalized two-position intensity correlation function
<I,I,>/<I;> <I,> are to be evaluated in this paper.

Because the acoustic frequency of concern is relatively high, the Kirchhoff
approximation will be used. Two types of spectral functions for the surface-
height fluctuation are considered: a Gaussian spectrum and the Donelan/Pierson
(D/P) spectrum. The latter is obtained from a model describing the fluctuations
of the ocean surface height which are controlled by the wind speed on the ocean
surface [13]. Both the scale-size and mean-square fluctuation of the ocean
surface height are determined by the wind speed. The fluctuation of surface
height ¢ is assumed to be statistically Gaussian distribu 2>d. Numerical
techniques will be designed to evaluate the multi-fold integrations of the fourth
moments., For mathematical simplicity, only two-dimensional propagation and
scattering are considered. The rest of this paper is organized as follows. The
geometry of problem i{s discussed in section II. Also, the average intensity of
the scattered wave field is evaluated. The derivations and numerical results for
the scintillation index are given in section III. Sections IV and V are devoted
to evaluation of the two-position coherence function and two-position correlation

function, respectively. Conclusions are drawn in section VI.

II. GEOMETRY OF PROBLEM
The basic geometry of two-dimensional scattering by a randomly scattered
rough ocean surface is shown in Figure la. The depth and smooth ocean surface are

defined to be along the z and x axes, respectively. A line source and a line
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- receiver are located at certain depths so that the incident range R,, scattering
range R,, incident angle #,, and scattering angle §,, are as shown in the figure.
The surface height fluctuation from the mean at z = 0 is described by the random
field ¢ (x) with <¢(x)> = 0. By ignoring some unimportant factors, the wave field

at the recelver in the Kirchhoff approximation can be expressed by [14]

D= fdx exp [-1(x?/x2 + 2ax + 2y{(x))] (6

where
s 2 s 2
x2 = _2_( 8in?0, , Sin 6,)_1 N
k R, R,
= k(cose - cosf,) (8
"5 1 8
and
- -X (sind, + sing,) (9
Y = > inB; + sinB;) .

Here k is the wave number which is assumed to be a constant in the ocean. In
other words, the ocean ic assumed to be a homogeneous medium to the sound wave.
In Eq. (6), since ¢(x) is a random field, the wave field p is stochastic. Note
that the coordinate center can be properly chosen so that §;, = 4, = ¥ and, hence,
a = 0.

The average intensity of the scattered wave field can be easily computed to

give

<I> = <|p|> = nx? (103

[
2
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Hence, the average intensity has nothing to do with random fluctuations of surface

i | height.

Figure 1lb shows the geometry for the evaluation of the two-position intensity
correlation function. Two line receivers are placed at different depths but the
same horizontal positions. The depth difference or separation is d. The ranges
R; and R; and the corresponding scattering angles #, and §, are defined in the
figure. The range R, and the corresponding angle # are used to define the

midpoint between the two receivers. Hence, R;, R;, §,, and §, can be expressed in

terms of R,, ¢, and d as

6, = 0 - sin’'(d cosf/2R,) (11)
8, = 6 + sin"'(d cos/2R,) (12)

and
(13

R, , = [RZ + (d/2)* = d R,8in@) /2

These equations will be used in the following sections.

ITI. SCINTILLATION INDEX

Since the scintillation index is related to a limiting value of the two-
positiun intensity correlation function <I;I,>, the derivation in this section
starts with <I,I,>. Only the detailed results of the scintillation index are

presented in this section. Those of the two-position intensity correlation

function will be given in t.-e next section.

The derivation starts with
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LI =< |p, 1?1, |*>

[[[[ axdx,ax,ax, expl-it(xd - xd) /xky + (o - x}) /s

(14)
+2a, (X, - %) +2a,(x - %1}
x <expl-i[2y,({(x) - {(x,)) + 2y,((x) - {(x)]1b
The ensemble average can be reduced to : 1
exp (-4<{*>H)
= exp {-4<{ (¥] + ¥3 - vic(x, - x) - ¥iC (%, - X (135)

+¥1Y2 (G ix, = X3) = Colxy = %)) = Colx, - X)) + C(x, - x.))1)

Here, <{?> is the mean square fluctuation of the surface height and Ce(x) is the
normalized correlation function of the surface height fluctuation. In Eqs. (14)
and (15), x¢;, Xez2, 71, and vy, are defined in Eqs. (7) and (9) for the two
receiving points, respectively. By considering the following variable

transformation with unit Jacobian:

%] 11 2 1] [ ¢]
Xl 1 -1 1 -1 |P/2 (16)
X, 1 -1 -1 1} |s/2
x) 11 1 -1 -1 |q/4]

the integrations with respect to t and q can be easily completed. The result is

, _anltAA, p o __
\Il Iz> = m f!: dpdg exp{ 1 [ng/ (A1 + Az) + PB ]} an

x exp [-4<{*> H(3,D)]
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¥: + ¥3 - ¥iC (2Ptn) - yiC (2B(1 - )

¥1Y2 (G (B + B0 - ¢ (Bt(2n - 1) -30) - C(Bt(2n - 1) + 5o (18

C((3-P)0)]

in terms of

A1,2 = x?z,z/?-az
B! = alla,x} - a,xi;)/ (xE + x£3)

2 2 2
N = X5/ (Xf; + Xg2)

the P=pP/t, 3 =5/t. The notation £ represents the characteristic length of
surface height fluctuation or more precisely is the scale size of the correlation
function C.(x). 1If we define

A = xi/20

and %X, and v as in Eqs. (7) and (9) for the midpoint between the two receivers,

<I;I,> in Eqs. (17) and (18) can be further reduced to

CI,Ip = AnlAA, A, [[ dp’ds’expl-i(DP's’ + BP)]
A+ A, T

x exp [-®*H' (S, P"))
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H'(S',P')y =¥ + Y2 - Y2C(2P/y) -F2C(2P/(1 - 1))

+Y,¥, [C(P 45 - C(P/(2n-1) - S') (24

-”CV"(P’VQQ-—- 1) +8/) + ¢(s’ - P))

Here,
D=2A/ (A, +Ay) (2%
B = /KB o (26)
Yi.2 = Y1,2/Y (27
&2 = 4<{®>y? (28)
and
C(x) = Colxx,/V2) (29)
Also, the new integration variables are P’ = B/(A)Y? and S/ = 3/(\)¥3.  From Eq.
(28), ® 1is an indicator of scattering strength.

Equations (23) and (24) will be used for evaluating the two-position
intensity correlation function. The rest of this section is devoted to the
computations of the scintillation index. When positions 1 and 2 coincide,
B=0,n=1/2, and D= 1, as can be seen in Eqs. (20), (21), and (25),
respectively. In this situation, Eqs. (23) and (24) become

<I% = 250 [[ dp' ds’exp (-1P'S’) exp [-®*H' (s, P)) (30)

with

H' (8!, P) = 2-2C(P") -2C(8') +C(P'+8') +C(P! -5 (3D
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The fact that the normalized correlation function Cc(x) or C(x) is an even

“function has been used. It is noted that the integration in Eq. (30) must result

in a real number for <I?> although the integrand is complex. Hence, this
integration possesses inversion symmetry with respect to both P' and §'.

Therefore, Eq. (30) can be rewritten as

<I¥H/<is? = %Re ff dpP'dS’exp (-1 P’S') exp [-®%*4' (57, P') ) (32)
o] B

where <I> given in Eq. (10) is used and Re stands for "the real part of."
To numerically evaluate the integration in Eq. (32), the integration area is
divided into three regions (I, II, III) as shown in Figure 2. The dimensions

defining the three parts L, L;, L, and L,, follow the relations

L

L +y/2L (33)

and

Ly = 2L, +L (34)

The sizes of L and L; will be defined later. In these three integration regions,
different approximations will be used for numerical computations. If the phy:ical
size of L is much larger than the scale size of the correlation of ¢, i.e.,

C(L) <<1, the integration for <12>/<I>? over region I becomes

(<IH/<D?), = -1'2t Re ffmdP’dS’exp (-iP'8s’) exp [-®2H' (S', P')) (35)

with

H'(8',P) w2 + C(P/~8"). (36)
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. _If the variable transformations x = (S§' + P')/2 and y = P’ - §' are used, it is

easy to obtain

P's! = x*-y?/4. (37)

With the phase factor y?/4 in the integrand of Eq. (35), the contribution to the

integration is negligible for large y. Hence, if L, is chosen so that L;2/4>>2nr,

Eq. (35) can be approximated by

(<I/<D>?), = LRe f dxf dyexp[-i(x?-y?/4)]
oL e | (38)

x exp [-P2(2+C(y))].

Next, if & is not extremely large, we expect that 1 - exp [-®* C(y)] decreases

very fast with y. Therefore,

(<12/<I>%) ; = 2 Rek, (28, - [ dyl(1-exp(-02C(y))]}

(39)
x exp (-2932)
where
n . 40
El = \ 3 (1 + l) ( )
and £, is a Fresnel integral as
§, = f dxexp (-ix?). (41)
Ly/vVE

The integrations in Egs. (39) and (41) can be easily completed for
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< <IH/<1>%).
- HrFor region II, we have B
- L )
(<I?>/<I>?) gy = —%RefdP’fds’exp (-i5'P') exp [-®*H'(S',PY].  (42)
L, 0

Here, a factor of 2 has been included since region III covers two separate parts
which result in the same integration value. Because the physical size of L is
much larger than the scale size of C(x), the upper integration limit L for §’' in
Eq. (42) can be replaced by « without significantly changing the integration

result. Also, H'(S’,P’') can be approximated by

H' (s/,P) = 2-2C(8)). (43)
Hence, Eq. (42) becomes

(CI®/KI>?) ,, = -i—Re dp’f ds’exp (-1S'P’) exp [-2®2(1 -C(S"))]. (44)

S

It is evident that the integration with respect to S’ is a Fourler transfort and
can be easily evaluated using the Fast Fourlier Transform algorithm cn a computer.
For region III, no approximation can be made. Double integrations ou a

computer must be performed. The contribution from region III is

L Len-# L Lo
(<I3/<DN pp = ZRelf ap [ ds'-[ap’ [ ds’) (45
Q9 0 0

x exp (-18'P'y exp [-®2H' (S/, P')]

with H'(S',P’') given in Eq. (31).

Hence, <I?>/<I>? is the summation of the results in Eqs. (39), (44), and
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(45). For numerical computations, the correlation function of surface height

fluctuation ¢ must be chosen., To illustrate the dependence of the scintillation
index on the parameters & and A, a Gaussian correlation function, corresponding to

a Gaussian spectrum, is used

Ce(x) = exp [- (x/0?) (46)

and, hence

C(x") = exp[- (x'VK)?]. (47

In numerical computations, L =5/yX and L, = (80%)*/? are used. The numerical

accuracy was checked by decreasing the step sizes in the integrations until the
results were not changed. Three curves are plotted in Figure 3 for the
scintillation index ¢ versus & for three different A values of 2.58 (long-dashed),
50 (short-dashed), and 245 (solid) when the Gaussian correlation given in

Eqs. (46) and (47) is used. Each curve increases with ¢ and approaches unity
asymptotically. In other words, the scintillation index increases with scattering
strength and becomes close to one when saturation is almost’'reached. The wave
field follows a jointly Gaussian distribution in the saturation regime. The fact
that the scintillation index does not exceed unity implies that the phenomenon of
focusing-defocusing does not occur. Among these three curves, the higher the
value of A, the larger is the scintillation index. To further explore this
trend, from Eqs. (7) and (22) under the assumptions f, =« §, = § and Ry = R, = R, we

can obtain

A = R/ (2kt?s8in?@) . (48)
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It is easy to understand that a smaller £ value (larger A) leads to stronger
Vscattering and, hence, a larger scintillation index. Also, as the range R is
increased more complete evolution from phase fluctuations, which are due to rough
surface scattering, into amplitude fluctuations is expected. Therefore, a larger
R value (larger A) results in a larger scintillation index. It is noted that for
#<2, the approximations used fail. The numerical methods used will also fail for

very strong scatter.

TWO-POSITION CORRELATION FUNCTION
The computations for the two-position correlation function start from
(23) and (24). By using Eq. (10),

Ref dp’f ds’exp(-i(DP'S'+BP')]
0 -

2A

KI,I.>/KI>KTI,> = —————o—u
12/ 1 2 n(A1+A2)

(49)

x exp [-®2H' (S, P!))

where H'(S',P’') is given in Eq. (24). In obtaining Eq. (49), the symmetry with
respect to P' was used. Because this integration does not possess symmetry with
respect to S', the partition of the integration area is different from that for
computing the scintillation index. For the integrations in Eq. (49), four regions
(I through 1V) are designated as shown in Figure 4. Among them, regions I and II

individually have two separate sections. For simplicity in notation, we define

E = zRefdp'f dsS'exp [-1(DP'S'+ BP') )
0 -

x exp [-®2H/(S/, P'))
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and, hence

_ AE
- 5
I, I>/<I<KI» ZA, A , 1)

The dimensions L, L;, L,, and 13 in Figure 4 are the same as those in Figure 2.
The approximation used for region 1 is the same as that for region I in

Figure 2. 1t results in

E, = 2Re (F-G) (52)

where

F = (%)”%xp(-182/40)([1-C,(u) -C (V)] -i[1-8,(u -8,(V])} (53

and
G = exp [-0% (V° +‘§)]{(-2Dl)1/2 (1+1) exp (iB?/4D)

- (54)
-2 dy[1 - exp (-977,¥,C(x)) 1}
0

The approximation for region II here is again the same as that for region II in

Figure 2. The contribution from this region is

Eq = %Re [ as'[dplexp (-ip's)
oL, :

(5%5)
x {cos (P'B) [exp(-®2[Y:+Y:-Y2C(2Pm) -¥2C(2P' (1 -0))]))

-exp (-9 (Y2 +¥2)) 1),

Again, the algorithm of the Fast Fourier Transform can be used for the integration

vith respect to P'. No approximation can be made for region I1X; its contribution
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L Leiy -7 L
Em-me[fdp’ f ds’+ fdp’de’]exp( -iDP's’) (56)

x cos (P'B) exp [-®2H/(S', P') ]

Here, H'(S',P') was defined by Eq. (24). Finally, for region IV the two-fold
integration cannot be simplified. However, H'(S’,P’') can be reduced to produce

Epy = 2RefdP f““" bl Y g5/ exp (-iDP'S' - i P'B)
7, L-(P'-Ly) t2n-1) (57)

x expl-02[y2 +¥2-7,Y,(C(P (29 -1) -8') +C(P'(2n-1) +5)) 1}

This two-fold integration i{s quite time consuming on a computer, especlially when 7
approaches 1/2. It is noted that E;y is equal to E;; when n = 1/2. This equality
can be used to check the accuracy of E;y,. Combining Eqs. (52), (55), (56), and

(57), we can obtain E as

E=E, +E;; +Epp + Epy (58)

and thence <I,;I;>/<I;><I,> from Eq. (51).

To describe realistic ocean surface fluctuations, the D/P spectrum [13] is
used at low wave numbers and the empirical spectral model of Pierson and Stacy
(15) and Pierson [16] at high wave numbers. This combined spectrum has an
approximate dependence on the inverse cube of the wave number over a wave number
span that is determined by wind speed and vanishes outside this region. In this
spectrum, both scale size £ and mean-square fluctuation <{?> are controlled by the

wind speed at the ocean surface. Two normalized D/P correlation functions are

depicted in Figure 5 for wind speeds of 10 m/s (solid curve) and 15 m/s (dashed
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curve). Side lobes f£.: both curves can be seen. The scale size £ is defined as

“the length at which the correlation drops to one-half of the maximum value. e

Therefore, we have £ = 9.27 m and 22.61 m for wind speeds of 10 m/s and 15 m/s,
respectively. Also, the mean-square fluctuations are <{®> ~ 1.08 m? and 5.38 m?,

respectively, for the lower and higher wind speeds.
In numerical computations, we again choose L = S/yA and L, = (80m®)!"

Other parameters are § = 10° and k = 4x (frequency = 3 kHz). Two values for
Ri = Rg =R at 1 km at 10 km will be used. Figure 6 shows the resuits for the
normalized two-position intensity correlation function <I;I>/<I;><I;> as a
function of the separation d between the twc receivers for variouas situations.
The four solid curves labelled by A, B, C, and D show the results for the )/P

correlations with: (A) R = 1 km and wind speed = 10 m/s,

(B) R =1 km and wind speed = 15 m/s,

(C) R =10 km and wind speed = 10 m/s,
and (D) R = 10 km and wind speed = 15 m/s.
For comparison, two dashed curves are plotted for the Gaussian correlation with
(A’) R =1 km and (C') R = 10 km. The scale size of the Gaussian correlation is
set at 9.27 m and mean-square fluctuation <{?> is 1.08 m? which correspond to the
wind speed at 10 m/s in the D/P correlation. The comparison between curves A and
B shows that for weak scattering the two-position intensity correlation is higher
for a higher wind speed. When the range R increases, phase fluctuations of the
scattered wave can evolve into amplitude fluctuations more completely and, hence,
the curves for the intensity correlation become higher. In the case of R = 10 km,
although the scintillation index at a wind speed of 15 m/s is higher than that at

10 m/s, the intensity correlation decreases faster with separation between the two
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receivers. The comparison between curves A and A’ and that between curves C and

- ¢' show that if all other parameters are the same, the Gaussian spectrum leads to

weaker scattering. Because forward scat*er in the Kirchhoff approximation is
governed by local specular reflection from properly oriented "facets" on the
surface, the mean-square surface slope determines the area of the surface that
contributes effectively to scattering. The quasi power law dependence of the D/P
spectrum ylelds higher mean-square surface slopes, and, hence, stronger scattering
than does the Gaussian spectrum. It is noted that curves A, B, C, and C' are
almost parallel, indicating that the correlation lengths in these cases are about
the same. Since curve D is steeper than curve G, the correlation length is
shorter and scattering is stronger in the case of D. For the same reason, the

scattering in the case of A’ is very weak.

V. TWO-POSITION COHERENCE FUNCTION
As discussed earlier in this paper, the two-position coherence function

carries information on phase fluctuations. The derivations start with

<(pyp3)?> = ffff dx, dx,dx,dx, exp (-1 [ (x{ + x]) /x¢,

(59)
-(xF +xd) /xE v 2a (%, + %) - 2a,(x, +x) 1)

x <expi-1[2y,({(x,) +{(x)) -2y,({(x,) + {(x))Ib

After using the variable transformation in Eq. (16), the integrations with respect

to t and q can be completed using the method of stationary phase to produce
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e SPp) D = 2m X X, Pexp [-21 (adxf; - “ixtax) )

X

[dP [ dBexpl-i[(P+3)?/aA, - (P-3)3/4A,)) (60)

exp [-¢<{*»>H(3F,P)]

X

where
H(S,DB) = y% + y3 + ny‘c('P+3) + y%C((Q-P)
-¥,Y, [C (P+q,/2) + C(5+q,/2) +« C(q,/2-3) (61)
with

T, = 42 (@A, - @A) (62)

Further normalization of P and 8 does not simplify the computations. Again, for

simplicity of notation the two-fold integration A is defined by

a = [dP[dBexpl-i((P+3)2/aA, - (P-3)2/aA,)}

(63)
x exp [-4<{*>H(3,P)]
Hence, the normalized two-position coherence function is
<(pyp3) 3> /IPKIp = —B  exp [-2i(aixd - alxd)] (64)
T

1

Five regions can be identified for computing A as shown in Figure 7. Regions
II and V individually include two areas. The dimensions, L', L;', L;', and L,’

are clearly shown in the figure. They are defined by
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Ly =Ly + 2L e
and

Li=yzL! + L. (66)

The choice of L' and L,’ must satisfy the inequalities L’ - g,/2>>1 and

L'*/4Ap»> >2r for both j = 1 and 2, respectively. For the contributions from

regions 1 and 1V, the approximation used for region I in Figure 2 can be applied.

The results are

Ay = exp (03 (y2 +¥D) ) g, {(27A,) /2 (1 + 1)

- (67)
-2 [dy (1 - exp (-®3yiC () 1)
and
A = exp [-02(y] +¥2) ) gy {(27A,) /2 (1 - 1)
- (68)
-2 [dy[1 -exp (-@*yi G (¥) )
where
g, = (mA,/2)Y2*{{1/2 - ¢, (Ly/RR))) -i(1/2 - S, (Ly/RA) 1Y~ (69)
and

g, = (RA,/2)Y2([1/2 - C,(Ly/ /R ) + i(1/2 - 5,(L3/ /7K 1} (70)
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To obtain the contributions from regions II and V, the approximation used for

region Il in Figure 2 can be utilized to produce the ccmbined result

Arrv = A+ Ay
:“_1"2 dPexp [-iAA, (A, -A,) B3/ (A, +A,)?]
L+,
LA, +A) /2004,
x de‘exp(-iPS’) exp [-1(A, -A,) 52/ (4A,A,)]
x (expl-®2[y2 +y2 - Yi¥; (G (3 +T,/2) + C(3-T,/2)) 1)

-exp{-®2(y2 +yD) ) .

Again, the FFT algorithm can be used for the integration with respect to 3.

Finally, without any approximation the contribution from region III is

L'l Lery-P JARTX L'«Li-P
Agr =1 [ dP [ -2 [ ap [ B
o “(Lely-P) L IR IS ) (72)

x exp{-1[(P+3)2/4A, - (P-3)7/4A,1 exp [-®2H'(5,P)]

where H'(2,P) is the same as H(S,P) in Eq. (61) except that vy, and 7y, are

replacea by ¥, and ¥,, respectively. The normalized two-position coherence

function can be obtained from the equality A = A; + Apy + Apr v + Aqp; and Eq. (64).

The same parameter values as before are used for numerical evaluation of the

normalized two-position coherence function. L’ and L'; are chosen so that

L' - @,/2 =5 and L{ = (80RA)?/3,

Figure 8 shows the absolute values of the
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normalized two-position coherence function |<(p;p,")%>|/<I;><I,>| as a function of

the separation d for various situations which are the same as those in Figure 6.

Each curve crops from its meximum value, which is <I®>/<I>?, to zero. All the

letters indicate the same cases, respectively, as those in Figure 6. The shorter

coherence lengths in the cases of B and D when compared with the cases of A and C

confirm that the scattering at wind speed 15 m/s is stronger. Apparently, phase
fluctuations play an important role in determining the size of coherence length. SRR
Curves A’ and C’ show that the coherence lengths in the case of the Gaussian

spectrum are about the same as those in the case of D/P spectrum when scattering

is weak and are smaller when scattering is stronger.

As discussed in section I, when scattering is weak, the ratio between the
absolute value of the two-position coherence function and the two-position
intensity correlation describes the fluctuation of the relative phase between the
two positions {see Eq. (5)}. Since the scintill.:tion index is 0.52 in the case
when R = 1 km and the wind speed is 10 m/s in the D/P spectrum, Eq. (5) must be
approximately true. By using Eq. (5), the root-mean-square of the fluctuation of
relative phase, i.e., <(S; - §,)%!%, is plotted for this case in Figure 9. The
fluctuation of the relative phase almnst reaches 2.25 (radian) at d = 17.5 cm,

which 1is only 0.35 times a wavelength.

VI. CONCLUSIONS

Three types of fourth moments of forward-scattered acoustic waves from a
randomly-rough ocean surface have been evaluated. The first is the scintillation
index which characterizes the intensity fluctuations of the scattered wave. The

second is the two-position intensity correlation function. It indicates the

spatial correlation of the intensity. The third is the two-position coherence
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furction which carries information on phase fluctuations of the scattered waves.
Particularly, when the scattering is not strong, the ratio of the absolute value
of the two-position coherence function over the two-position Intensity correlation
function exactly describes the mean-square fluctuation of the relative phase
between two observation positions.

The Fresnel-corrected Kirchhoff approximation was used to obtain integral
expressions for the fourth moments. Various approximation techniques were
developed for numerically evaluating the integrals. The approximations and
numerical methods are not applicable, however, for treating the very weak or
extremely strong scattering regimes. Two types of power spectra for the surface
height fluctuation were considered: a Gaussian spectrum and the Donelan/Pierson
spectrum vhich is an empirical model based on ocean wave measurements. The D/P
spectrum resulted in stronger scattering than the Caussian spectrum for the same
values cf A and ¢ which was attributed to the greater mean-square surface slope
obtainea with the D/P spectrum. The two-position coherence function was found to
decay much more rapldly with displacement between receivers than the intensity
correlation function. For weak scattering, this led to large relative phase

fluctvations between two vertically displaced observation points.
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